Contact: Ronald Gilgenbach

Chair and Chihiro Kikuchi Collegiate Professor

Nuclear Engineering and Radiological Sciences

(734) 763-1261

1911 Cooley

Alexander Thomas | Faculty

Alexander Thomas

Associate Professor, Nuclear Engineering and Radiological Sciences

6108 ERB I
(734) 763-6008



Professor Thomas works in experimental and theoretical plasma physics. His research is focused on the physics and applications of high power laser interactions with plasma. When heated by lasers, highly non-equilibrium states of matter arise, where complex behavior such as collective wave-particle interactions is prevalent and only full kinetic descriptions of the particle distribution are valid. Light and plasma couple together strongly, leading to instabilities and nonlinear wave formation. At the highest intensities, quantum electrodynamic effects become important in determining the plasma dynamics. Applications of intense laser driven plasma include advanced, miniature particle accelerators, next generation photon sources and inertial fusion energy. Professor Thomas is part of the Center for Ultrafast Optical Science High Field Science group, using the HERCULES and Lambda-cubed very high power laser systems for investigating the physics of relativistic plasma.

Short Bio



Imperial College London
Diploma of Imperial College ’07
PhD Plasma Physics ’07
MSci (Honors) Physics (First Class) ’02



Associate Professor of Nuclear Engineering & Radiological Sciences
Department of Nuclear Engineering & Radiological Sciences
University of Michigan, Ann Arbor, MI, 2014 – Present

Assistant Professor of Nuclear Engineering & Radiological Sciences
Department of Nuclear Engineering & Radiological Sciences
University of Michigan, Ann Arbor, MI, 2008 – Present

Research Associate, Plasma Physics Group
Imperial College London, 2006 – 2008

Selected Honors and Awards

    • Young Investigator Program
      Air Force Office of Scientific Research, 2012
    • Faculty Early Career Development Program
      National Science Foundation, 2011
    • Postdoctoral Fellowship (declined) 
      NSERC of Canada, 2008
    • PhD Research Award
      European Physical Society, Plasma Physics Division, 2007
    • First Place for LIDAR Technologies, Imperial College Entrepreneurs’ Challenge 

Research & Teaching


  • Laser-Plasma Interactions: Ultra-high intensity laser-plasma interactions, compact laser-plasma based particle accelerators, particle-in-cell simulation, laser propagation in plasma at high intensity, inertial confinement fusion, Vlasov-Fokker-Planck modeling, non-local transport and magnetized plasmas.
  • Compact Radiation Sources: Laser-plasma radiation sources, radiation reaction force at high field strengths, radiation generation computational modeling.


  • ENGR 100-850 - An introduction to the Engineering Profession
  • ENGR 110 - The Engineering Profession
  • NERS 211 – An Introduction to Nuclear Engineering and Rad. Sciences
  • NERS 250 – Fundamentals of Nuclear Engineering and Rad. Sciences
  • NERS 471 – Introduction to Plasmas
  • NERS 590 – Special Topics, Computational Plasma Physics

Selected Publications

For a full list of Prof. Thomas's publications, please see his CV.


  • Z. H. He, B. Hou, V. Lebailly, J. A. Nees, K. Krushelnick, and A. G. R. Thomas, Coherent control of plasma dynamics, Nat. Comms. 6, 7156 (2015). 
  • P. Zhang, C. P. Ridgers, and A. G. R. Thomas, The effect of nonlinear quantum electrody- namics on relativistic transparency and laser absorption in ultra-relativistic plasmas, New J. Phys. 17, 043051 (2015). 
  • Z. H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, Ionization-Induced Self- Compression of Tightly Focused Femtosecond Laser Pulses, Physical Review Letters 113 (2014). 
  • A. S. Joglekar, A. G. R. Thomas, W. Fox, and A. Bhattacharjee, Magnetic Reconnection in Plasma under Inertial Confinement Fusion Conditions Driven by Heat Flux Effects in Ohm's Law, Phys. Rev. Lett. 112, 105004 (2014). 
  • Z. H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate, Appl. Phys. Lett. 102, 064104 (2013). 
  • A. G. R. Thomas, C. P. Ridgers, S. S. Bulanov, B. J. Griffin, and S. P. D. Mangles, Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam, Phys. Rev. X 2, 041004 (2012). 
  • A. G. R. Thomas, M. Tzoufras, A. P. L. Robinson, R. J. Kingham, C. P. Ridgers, M. Sherlock, and A. R. Bell, A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma, J. Comput. Phys. 231, 1051 (2012). 
  • A. G. R. Thomas, Scalings for radiation from plasma bubbles, Phys. Plasmas 17, 056708 (2010). 
  • C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Ionization Induced Trapping in a Laser Wakefield Accelerator, Phys. Rev. Lett. 104, 025004 (2010). 
  • A. G. R. Thomas, Z. Najmudin, S. P. D. Mangles, C. D. Murphy, A. E. Dangor, C. Kamperidis, K. L. Lancaster, W. B. Mori, P. A. Norreys, W. Rozmus, and K. Krushelnick, Effect of laser- focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators, Phys. Rev. Lett. 98, 095004 (2007).