The recent, best-selling book *Tuxedo Park* describes the crucial role of the magnetron in the radar systems that contributed to the Allied victory in WWII. Magnetron amplifiers continue to be an important part of today’s military defense systems such as the Navy’s Aegis class cruiser and the Patriot missile. The magnetron is also the microwave power source used in some 60 million microwave ovens sold each year. However, in the 60 years since its invention, the problem of microwave noise emission from the magnetron has never been solved. This microwave noise, near 2.45 GHz, causes interference with cordless phones, and could potentially interfere with computer communications systems such as Bluetooth and IEEE 802.11 b,g, which utilize the same part of the microwave spectrum as microwave ovens.

A recent breakthrough by faculty and students from the Nuclear Engineering and Radiological Sciences Department (NERS) has solved this crucial problem. NERS graduate student, Bogdan Neculaes, with Professors Ron Gilgenbach and Y. Y. Lau, discovered a unique magnetic field that completely eliminates the noise in microwave magnetrons. This invention is so inexpensive to implement that it could easily be incorporated into the manufacture of tens of millions of microwave ovens. The initial results were published in the September 8, 2003 issue of *Applied Physics Letters* and reported at the 2003 APS Division of Plasma Physics Meeting in Albuquerque, NM. Neculaes, Gilgenbach and Lau have found that adding azimuthal perturbations to the magnetic field in a standard magnetron causes the microwave noise to disappear. Recent two-dimensional electromagnetic particle-in-cell code simulations have demonstrated that a further advantage of the technique is that magnetrons start oscillation much faster. This effect is particularly pronounced if the number of magnetic perturbations is equal to half the number of cavities in the magnetron.
New Academic Year Brings Growth for NERS

With all the preparations the department is making for the new academic year, I am pleased to note continuing increases in undergraduate and graduate student enrollments as a simple indicator of the strength of the department. Based on the undergraduate NERS enrollment of Spring 2004, we expect to have 85 undergraduates in Fall 2004, which will easily be more than triple the low enrollments we had in 1997-99. The Engineering Physics enrollment is expected to remain at a steady level of 30 students. With an incoming class of 26 graduate students, we will have a total of 82-84 graduate students for the new academic year. The ability to attract a large incoming class of over 25 graduate students for two consecutive years clearly indicates the strength of departmental research programs in all areas.

The department continues to maintain research funding of $6M, despite the move of Professor Rod Ewing and Dr. Lumin Wang to the Department of Geological Sciences.

The increases in NERS enrollments reflect not only the benefits of diversifying departmental programs over the past several years, but also renewed enthusiasm for the future of nuclear energy in general. We expect to have at least 25 students in NERS 441, *Nuclear Reactor Theory I*, and had 11 students in NERS 561, *Nuclear Core Design and Analysis I*, in Winter 2004. These enrollments represent the largest fission reactor classes in perhaps 15 years.

The increase in our undergraduate enrollment is due, in no small measure, to the significant undergraduate scholarship awards we have made over the past several years. This was made possible partly through support from the College but more recently through the Department of Energy (DOE) Industry Matching Grant Program. During the past five years, Westinghouse Electric Company, DTE Energy, Black & Veatch Corporation, Dominion Generation, and Framatome ANP have made contributions that procured matching grants from DOE. I would like to take this opportunity to thank many friends and alumni of the department, in particular, James Fici of Westinghouse, for these industrial contributions.

In recognition of the importance of scholarships for our undergraduate program, the NERS faculty has agreed to establish the NERS Undergraduate Scholarship Fund as the departmental program for the CoE Sesquicentennial Campaign. I do hope that all of our loyal alumni and friends, together with the faculty and staff, will support this effort to build a significant endowment for the undergraduate scholarship program (see p. 11).

We have taken two measures to reduce the impact of the demise of the Ford Nuclear Reactor. First, we were able to make arrangements with Dow Chemical Company to use the Dow TRIGA reactor in Midland, MI for
NERS strengthens ties with CNNC and Westinghouse

During March 2004, a high-level delegation from the China National Nuclear Corporation (CNNC) visited the University. The delegation was headed by CNNC President Rixin Kang and consisted of 10 members, including directors of two national laboratories. The delegation met College of Engineering (CoE) Dean Stephen Director and Associate Dean Gary Was as well as U-M President Emeritus James Duderstadt. In a seminar delivered to the NERS faculty and students, President Kang explained China’s current energy status and outlined an ambitious plan for China’s expansion of nuclear power, which includes building more than 26 new nuclear power plants over the next 15 years. The CNNC is responsible for planning, development, and regulations of nuclear energy facilities and programs in China. The CNNC delegation met with senior management of Westinghouse Electric Company and visited Westinghouse facilities following their visit to the University.

The visit culminated a six-year collaboration between CNNC, Westinghouse, and NERS through the CNNC/Westinghouse Fellowship Program. The Fellowship funding of $515,000 to date has been provided by Westinghouse through support from NERS alumnus James Fici, Senior Vice President of the company. Nine engineers from CNNC have successfully completed a rigorous 12-month master’s program in NERS and have returned home to responsible positions in various CNNC organizations. The CNNC, Westinghouse, and NERS reaffirmed plans for further collaboration during the visit.

Invited by President Kang, NERS chair John Lee and research scientist Lumin Wang returned a visit to CNNC headquarters during May 2004. An extensive interview was held to select two Westinghouse Fellows from a pool of six CNNC recommended candidates for academic year 2004-05. Professor Lee and Dr. Wang also made presentations on NERS instructional and research programs at three major nuclear engineering departments in China. NERS is well positioned to play an important role in China’s development of nuclear power with continued support from Westinghouse.
The Board of Regents has renamed the Media Union in honor of James Duderstadt and his wife Anne.

In approving the new name, the regents called the building “a particular manifestation of Dr. Duderstadt’s vision for the University. Dedicated to creative collaboration among faculty, students and staff across a broad range of disciplines, it is a building shaped by his efforts as dean, provost and president.”

The regents also recognized the dedicated service of Anne Duderstadt, noting that she “worked tirelessly to promote an awareness of the University’s history and to preserve its historic and artistic treasures.”

Jim Duderstadt’s association with the University spans 35 years. In addition to guiding the University as its 11th president from 1988-96, he earlier served as dean of the College of Engineering, as provost and vice president for academic affairs, and on the NERS faculty. He is currently University Professor of Science and Engineering and heads the Millennium project, a research center concerned with the impact of various societal, economic and technological changes on the research, teaching and service activities of universities.

Media Union renamed to honor the Duderstadts

New chair appointed effective September

For those of you who may not know Bill, he received his BSE degree in engineering physics from U-M in 1967 and his MS degree in physics from the University of Wisconsin in 1968. Following a stint in the U.S. Navy (Naval Reactors) during 1969-73, he returned to Michigan and received his PhD degree in nuclear engineering in 1976. He then joined the nuclear methods development group at Combustion Engineering. He returned (again) to the U-M in 1977 as an assistant professor, and is presently professor of Nuclear Engineering and Radiological Sciences. Bill served as chair of Nuclear Engineering from 1990-1994 and as the College of Engineering’s Associate Dean for Academic Affairs from 1994-1999. He is currently director of the Center for Advanced Computing.

Bill’s research is in the area of numerical methods development for computational particle transport, including the development of algorithms for advanced computer architectures. He has published approximately 130 journal articles and conference proceedings and has graduated 23 PhD students. He has received numerous honors and awards including the Glenn Murphy Award for Outstanding Contributions to the Profession and Teaching of Nuclear Engineering from the American Society for Engineering Education (ASEE) in 1993 and was elected a Fellow of the American Nuclear Society in 1995.

For those of you who may not know Bill, he received his BSE degree in engineering physics from U-M in 1967 and his MS degree in physics from the University of Wisconsin in 1968. Following a stint in the U.S. Navy (Naval Reactors) during 1969-73, he returned to Michigan and received his PhD degree in nuclear engineering in 1976. He then joined the nuclear methods development group at Combustion Engineering. He returned (again) to the U-M in 1977 as an assistant professor, and is presently professor of Nuclear Engineering and Radiological Sciences. Bill served as chair of Nuclear Engineering from 1990-1994 and as the College of Engineering’s Associate Dean for Academic Affairs from 1994-1999. He is currently director of the Center for Advanced Computing.

Bill’s research is in the area of numerical methods development for computational particle transport, including the development of algorithms for advanced computer architectures. He has published approximately 130 journal articles and conference proceedings and has graduated 23 PhD students. He has received numerous honors and awards including the Glenn Murphy Award for Outstanding Contributions to the Profession and Teaching of Nuclear Engineering from the American Society for Engineering Education (ASEE) in 1993 and was elected a Fellow of the American Nuclear Society in 1995.

Faculty Kudos

James Paul Holloway
Associate Professor
Faculty Merit Award (NERS)
Teaching
(Selected by Alpha Nu Sigma)
Faculty Merit Award (NERS)
Outstanding Achievement

Lumin Wang
Research Scientist
Tan Chin Tuan Fellow
Nanyang Technological University
Singapore, 2004
Four U-M College of Engineering (CoE) graduates were part of a 10-person U.S. monitoring team visiting the Siberian Chemical Enterprise in Seversk in January 2004. Seversk is located in Siberia about 1,800 miles east of Moscow, and the temperature at the time of the photograph above was about 0°F, which was “seasonable” for that time of year. Snow sculptures are shown behind the U.S. monitors.

Under an agreement signed in 1993 between the U.S. Department of Energy and the Russian Ministry of Atomic Energy, the Russian Federation is blending down 500 metric tons of highly enriched uranium to low enriched uranium, for use as fuel in nuclear power reactors. As of May 1, 2004, about 210 metric tons of highly enriched uranium, equivalent to about 8,400 nuclear weapons, has been down blended and delivered to the U.S. Enrichment Corporation for use as fuel in nuclear power reactors. The program to down blend the remaining 290 tons of highly enriched uranium is scheduled to be completed in 2013.

The U.S. sends monitors to four Russian facilities where the blending is taking place, including the Siberian Chemical Enterprise in Seversk. The monitors observe the operations in the facilities, review and obtain copies of material accountancy documentation, and use non-destructive assay instruments to determine that highly enriched uranium is being processed in the facilities. Under reciprocity measures of the agreement, Russian monitors visit U.S. facilities to gain confidence that the low enriched uranium is used to produce fuel for nuclear power reactors.

The four CoE graduates on the team visiting Seversk included William Mosby, David Thomas, Taner Uckan and John Valentine. Bill Mosby (BS Aero and MS ME 1977) works at Argonne National Laboratory in Idaho Falls, Idaho, and is a new monitor with expertise in instrumentation. David Thomas (BS EE, BS Math and MS NE 1957) works in Lawrence Livermore National Laboratory’s Germantown, Maryland Office. Dave is one of the first monitors and concentrates on process operations in the Russian facilities. Taner Uckan (BS EE, MS NE and PhD NE 1975), who works at Oak Ridge National Laboratory in Oak Ridge, Tennessee, assisted in the design and installation of equipment to monitor the flow of uranium hexafluoride in the blending equipment. John Valentine (PhD NE 1993) works for Lawrence Livermore National Laboratory. He developed an improved non-destructive assay instrument that is being used by U.S. monitors in the Russian facilities to confirm that highly enriched uranium is being processed in the facilities.
Several NERS Alumni visited the department this year and gave presentations on their current research:

An Opportunity to Share

- **James Baciak**, NERS and University of Florida
 - Pixelated Radiation Detectors for Room Temperature Gamma-Ray Spectroscopy

- **Forrest Brown**, Los Alamos National Laboratory
 - What’s New in Monte Carlo Transport?

- **James Fici**, Nuclear Power Plants, Westinghouse Electric Company
 - Nuclear Power as a Global Energy Provider and the Outlook for Nuclear Power in the United States

- **Rami Kishek**, University of Maryland
 - The University of Maryland Electron Ring: A Model for Future Accelerators

- **Jaques Reifman**, U.S. Army Medical Research Materiel Command
 - Medical and Bio Informatics Research in the U.S. Army

- **Jacob Trombka**, Goddard Space Flight Center
 - What X-Rays, Gamma-Rays, and Neutrons Have Taught Me about our Solar System

- **Paul Turinsky**, North Carolina State University
 - When All Else Fails, Try Adaptive Core Simulation

If you would like to present a colloquium, please contact Professor Y. Y. Lau (yylau@umich.edu) or Professor Edward Larsen (edlarsen@umich.edu).

FAREWELLS

Associate Research Scientist Ronald R. Berliner left Nuclear Engineering and Radiological Sciences at the end of May 2004 to build a research program at North Carolina State. He will be working at the North Carolina State PULSTAR reactor, where he will install the neutron powder diffractometer that was originally destined for the Ford Nuclear Reactor. Dr. Berliner will also be responsible for building a research program centered on neutron scattering applications of the reactor and anticipates continuing the work on neutron detector development that he started here in Ann Arbor.

Ron enjoyed his time with NERS and the University of Michigan. He values the personal and professional associations that he established here and will miss the wonderful University facilities, the helpful staff and the outstanding students that he encountered here. He urges all to take the time to look him up if ever in the Raleigh, North Carolina area, since he would be delighted to share what he will be doing there.

Cyndi Beaudry, NERS Unit Administrator since 2002, has taken a position as business manager at the LS&A Chemistry Department, University of Michigan.

STAFF ADDITION

Caroline Joaquin joined NERS this year as the new Unit Administrator. She comes to us from the University of Rhode Island where she held two positions—Business Manager for the College of Pharmacy and Budget Analyst for the Budget Office. She moved to Michigan to accept her new position with NERS in January 2004. Previous to her positions at URI, Caroline was Finance Director for the Town of West Warwick for several years. She enjoys painting, reading, listening to music, singing and long movies.

Magneton

continued from p. 1

This invention could lead to lower jitter in radar pulses with a cleaner microwave spectrum for improved signal-to-noise ratio.

The new magnetron has been featured on abcnews.com, Michigan Public Radio, and a televised interview produced by the American Institute of Physics: Discoveries and Breakthroughs Inside Science, which will be available for broadcast in major U.S. cities during the coming year. (See http://www.aip.org/dbis/)
Dow provides neutrons for NERS students

As part of the NERS senior laboratory classes, students spent three days at the TRIGA reactor facility at Dow Chemical in Midland, Michigan. The work was supervised by Dow Chemical staff Ward Rigot and Siaka Yusuf—both NERS alumni—as well as NERS Professor Ron Fleming. The students performed a control rod calibration by reactor period measurement and a reactor power calibration based on calorimetry.

The purpose of the third trip was to participate in a state-of-the-art neutron activation analysis (NAA), where the students determined both aluminum and chlorine concentrations in a sample of synthetic rubber. Thanks to Mr. Rigot, Dr. Yusuf and the rest of the reactor staff at Dow, all three measurements proceeded flawlessly.

The last trip, for the neutron activation analysis, included not just the lab course students but also several additional students and nuclear professionals. The visit began with an introduction to the facility for those who had not seen it before. Dr. Yusuf then described the NAA measurement that the students would carry out. There is a rubber whose properties are affected by both its chlorine and aluminum content, so a measurement of the concentration of these elements is important. This measurement is challenging, since it involves two activities [2.25 minute Al-28 and 37.2 minute Cl-38] both of which are decaying during the counting step. Fortunately, Cl-38 has two gammas (1642 and 2167 keV) to use for quality assurance, while Al-28 only has one at 1779 keV.

Those who participated found the trips quite interesting and educational. Some students were even seen to be reducing their data during the drive home.

NERS and the University of Michigan are very grateful to the generous help of Ward Rigot, Siaka Yusuf, and the rest of the Dow Chemical company for their very generous contribution of time and neutrons!
Detroit Area Pre-College Engineering Program
Once again, NERS participation in the DAPCEP program has been a great success. For the seventh year, seventh and eighth graders traveled from Detroit to Ann Arbor every Saturday for five weeks. The DAPCEP program introduces inner city youths to engineering and other science-oriented career opportunities and encourages them to obtain an education after high school. The students learned about and experimented with many different nuclear engineering concepts including radiation measurements, plasmas, nuclear power, radiation shielding, and radioactive decay. Coordinated by the NERS department and the Minority Engineering Program Office at the College of Engineering, this program’s success is due to the time and effort of the NERS students. This year five undergraduates and four graduate students interacted with a full class of 15 students. In addition, Syreeta Cheatom, an alumna of the department, came to campus to visit with the students and talk about her career in nuclear engineering.

Industry Forum/Career Fair
To better meet the needs of industry and students, the 7th NERS Industry Forum and Career Fair was held in the fall. A special seminar on November 6, “Your Future and the Peaceful Atom” by Larry Foulke (Bettis Atomic Power Laboratory and ANS President) kicked off the event. Industry participation almost doubled from the previous year. Participants included: American Electric Power (AEP), DTE Energy, Idaho National Engineering and Environmental Laboratory, Knoll’s Atomic Power Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Onsite Companies, Sandia National Laboratories, and Westinghouse. Students had the opportunity to interview for summer internships as well as for permanent opportunities with the participating companies/laboratories.

If you would like to represent your company/laboratory in the next forum and fair to be held November 5, 2004, please contact Pam Derry at (734) 936-3130 or p gderry@umich.edu. This is a great opportunity for you to visit the department, talk with faculty and interact with the students.

American Nuclear Society
The University of Michigan Student Branch of the American Nuclear Society (U-M ANS) has several goals: to facilitate connections between the students and members of the nuclear industry, to provide accurate information about the applications of nuclear technology to the campus and community, and to promote interaction among NERS students, faculty, and staff.

Outreach activities this year included Relay for Life to raise money for cancer research, and preparing almost 100 GM counters to be donated to local elementary and high school teachers for use in lessons about radiation.

Members also participated in intramural sports, an inter-society bowling event, North Campus Fall Festival, and Tech Day. In addition, a group of eight student members attended the National ANS Student Conference in April at the University of Wisconsin.

U-M ANS monthly meetings included information sessions from KAPL and Framatome/Areva, Dance Marathon, and the Engineering Overseas Studies representative.
Alumni Notes

Gautam Agrawal (BSE ’95, M Eng ’96) completed his M.D. in 2000 from Ohio State University. He plans to complete his residency in Radiology at Johns Hopkins Hospitals in 2005. Gautam has accepted an MRI Fellowship in San Francisco, CA for 2005. In 2003 he started VisionRadiology, a company which provides interpretation of radiologic procedures performed around the U.S. and the world using the internet to centralize reading (teleradiology). Gautam has been married for two years to his amazing wife Meera.

James Baciak (BSE ’98, MSE ’01, PhD ’04) After completing his PhD work in March, Jim accepted a faculty position at the University of Florida (Gainesville). He is the instructor for the radiation detection courses, and is setting up research activities in radiation detector development and applications. He is actively recruiting students who show interest in radiation measurements.

Charles Barnes (PhD ’67) is currently the manager of Assurance Technology Program Office at the Jet Propulsion Laboratory in Pasadena, CA.

Cletus (Mel) M. Bost, Jr. (MS ’71, MBA ’78) is a Strategic Project Coordinator with the ConocoPhillips Corporation Global Information Services Program Management Office in Bartlesville, OK. He and his wife Linda Steven Bost (BA, MA, MBA U-M) live in Owasso, OK.

Sanford (Sandy) Cohen (PhD ’64) continues to run his consulting company SC&A, Inc., although his enthusiasm for professional activities is diminished by his other interests. He travels extensively, presents his travel videos on local television and to senior groups, is involved in advocacy of the separation of church and state, and enjoys spending time with his first grand-child. The photo is of a recent trip to the Galapagos Islands.

Andrea Cross-Dial (BSE ’89) received an MS degree in Industrial Engineering from the University of Tennessee in 1994. She is currently working as a stay-at-home mom for her two-year old daughter. Andrea is also doing some part-time consulting work for SOLUTRON, Inc., working on the NRC’s Human Factors Information System database. She lives in Cary, NC with her husband Chris and daughter Lindsay.

Michael E. Cunco (BSE ’82, MSE ’84, PhD ’89) announces the fast arrival of his second son, Nicolas Francis Cunco. Nicolas was born on April 24, 2004 weighing in at 8 lbs 3 ows and 21 inches. They awakened at 4:00 A.M. and Nicolas was born at the hospital at 5:15 A.M.

Marie-Anne Descalle (PhD ’99) is at Lawrence Livermore National Laboratory. While mainly working on active interrogation techniques of cargo containers, she continues to maintain a small activity in Monte Carlo methods applied to cancer radiotherapy treatment planning. She and Jan-Ulco Kluiwstra had a baby last year. He turned one on May 27, 2004. His name is Max-Emin and he is a blast.

Piotr Gmytrasiewicz (MSE ’87, PhD ’92) and his wife Connie are happy to announce the birth of their twin daughters, Georgia and Sofia.

Harry Goodman (BSE ’80) has been named Design Engineering Manager at Entergy, Inc. Goodman, a 16-year Entergy employee, has been the Nuclear Engineering Manager at River Bend Station for the past two years. Prior to that he was the Reactor Engineering Superintendent. Before coming to River Bend, he served as BWR Physics Support Supervisor in Jackson and was a senior staff engineer at GGNS. Goodman holds a BS in Nuclear Engineering from the University of Michigan, an MBA from Mississippi College, and an AAS in Electronics Technology from Hinds Community College. He also holds an SRO certification and is a licensed Professional Engineer.

John Grundhofer, Jr. (MSE ’91) completed the Systems Engineering Training (SET) program last September at Lockheed Martin Space Systems Company in Sunnyvale, CA. SET is a two-year program that incorporates academic courses, rotational assignments, and a variety of special activities/networking opportunities to provide engineers with the experience and knowledge they require to become effective systems engineers in leadership roles. He has transitioned to a permanent position as the Space Vehicle Electrical Systems Integrator on the Advanced EHF program, the follow-on to the Milstar program, providing worldwide military satellite communications. His son, John III, is almost two and is a natural engineer, although he says he wants to be a firefighter. He is off to a good start on the academic road and can already say “Go Blue!” John and his family have been considering moving back East to be closer to family but opportunities in Space and Aeronautical systems in Michigan appear to be limited. If any alums have any suggestions, send him a note at john.w.grundhofer@lmco.com.

Richard Gullickson (MSE ’68) is enjoying life as the Director for the Advanced Systems and Concepts Office at the Defense Threat Reduction Agency, Ft. Belvoir, VA. He is always pleased to hear from old friends and can be reached at richard.gullickson@dtra.mil or dickgull@aol.com.

Edward H. Klevans (MSE ’58, PhD ’62) has been elected as a Fellow of the American Nuclear Society. He is a Professor and Department Head Emeritus of Nuclear Engineering at Penn State.
Robert McGrath (PhD ’80) was named Ohio State’s senior vice president for research on May 7, 2004. Prior to this, as a plasma physicist and engineer by training, McGrath joined Penn State in 1996 as a professor of engineering science and was selected in 1999 to serve as associate vice president for research. Prior to joining Penn State, McGrath worked for Sandia National Laboratories in Albuquerque, NM from 1984 through 1998. While at SNL he served as a senior research department manager and program manager. He held senior positions within Sandia’s tokamak fusion energy program and coordinated international collaborations for the Department of Energy (DOE) on plasma-materials in tokamaks with both the Japanese Atomic Energy Research Institute and the National Institute for Fusion Science, as well as with several physics laboratories in the European Union and the Russian Federation. He also served as visiting scientist at the Kernforschungsanlage’s Institute for Plasma Physics in Germany and at the Commissariat a l’Energie Atomique in the south of France. Prior to 1984, McGrath held various research positions at Argonne National Laboratory, the Laboratory for Laser Energetics, Battelle Pacific Northwest Labs, Exxon Research and TRW, Inc. He has authored more than 50 journal publications and is a member of the American Physical Society, the Institute of Electrical Electronic Engineers, the American Society for Engineering Education and the American Association for the Advancement of Science.

Jagdish (Jack) Saluja (MSE ’59) has been President of VSI Satech, Inc since 1996. He has been involved in international activities such as: Support of I&C activities for Westinghouse in Egypt, development of a Fertilizer Project in Bolivia and on the border of Bolivia and Brazil, development of a 28MW Bagasse based Power Plant in South India, and consulting on reconstruction activities in Kabul, Afghanistan. From 1978 to December 2001 (when operations were terminated), Dr. Saluja was President of Viking Systems International. Here he successfully managed several of Viking’s contracts with government and industry since the founding of the company, and was instrumental in developing Joint Ventures in Hungary and Russia. He has coordinated the company’s efforts in the development of coal technology for the Department of Energy, and provided support services to the Nuclear Regulatory Commission in licensing reviews of commercial Nuclear Utilities. He also coordinated Viking’s subcontracts with Bechtel in support of USAID/ETIP and the Power Sector Project for Eastern Europe. Prior to this, he worked for Westinghouse Electric Corporation (1967-1977) where he was involved in areas ranging from safety analysis of nuclear power plants, control systems design and analysis of reactor systems. He has contributed extensively to the Westinghouse PWR FSAR analysis and has developed several of the safety analysis standards used for analysis of accidents. He also contributed extensively to the development of the Control System design for the NERVA Nuclear Rocket Engine. From 1959-1963, he was at Argonne National Laboratory working on the development of the Control Systems Design of the Jupiter Reactor and submittal of the Hazards Summary Report to the Atomic Energy Commission.

Tony Sinclair (MSE ’78, PhD ‘80) became Chair of the Department of Mechanical and Industrial Engineering at the University of Toronto January 1, 2004. He still conducts research on ultrasonic nondestructive testing when he is not buried in administrative paperwork.

Rebecca Steinman (MEng ’98, MSE ’99, PhD ’00) is currently working as a Senior Engineer at Advant Engineering Services, Inc. in Ann Arbor, MI. She has recently been elected to a three-year term on the ANS National Environmental Sciences Division (ESD) Board of Directors.

Rand Warsaw (BSE ’78, MSE ’82) has been appointed President of WeatherWise USA, Inc., a financial engineering firm. He also received his MBA in 1987 from the University of Pittsburgh. While Rand reported in the last NERSNotes that he was going to take life a little slower, this seems to have changed. For at least the next few years, he will be working, spending time with his family, coaching swimming and soccer teams, and playing soccer. Rand lives with his wife, four kids, a Labrador, a borzoi and a guinea pig in Monroeville, PA.
Every year we strive to offer our students in Nuclear Engineering and Radiological Sciences the best possible educational and research opportunities. A strong faculty and a focus on cutting-edge programs are, of course, the foremost components of these opportunities. However, being able to offer scholarship aid to a few more outstanding students often makes the difference between just being good and being the best. Your annual gifts to the Department provide the funding for that margin of excellence which prepares our graduates to compete successfully in today’s world and to contribute substantially to society. A scholarship can provide the financial boost to allow a student the opportunity to study a field of his or her choice, or it may help one more deserving student to complete his or her education. We count on you to help us continue our offering of exceptional educational opportunities in NERS.

All gifts received by December 31, 2004 are tax deductible for the year 2004. Use the form below to send your gift.

Please designate my gift to:

- [] NERS Undergraduate Scholarship Fund
- [] NERS Kikuchi Scholarship Fund
- [] NERS Special Fund (undesignated)

Name _____________________________________
Address _____________________________________

Enclosed is my gift of $1,000 $500 $100 Other _______
(Make checks payable to the University of Michigan)

Enclosed is my (or my spouse’s) employer matching gift form

Charge my gift to: [] Visa [] MasterCard [] Discover [] AMEX

Account Number

Expiration Date

[] []
Signature _______________________________________

With college expenses increasing, scholarships are a vital part of undergraduate education. As part of the department’s recruiting efforts, a scholarship program was established through first- and second-year Merit Scholarships and a four-year Continuous Merit Scholarship.

The NERS department disburses approximately $50,000 each academic year to students interested in nuclear engineering and radiological sciences. You may remember receiving one of these scholarships yourself. Funding comes, in part, from contributions made by alumni, friends, faculty and staff to the Kikuchi Endowment Fund as well as the newly-established Undergraduate Scholarship Fund.

The department is working hard to establish this new fund as an endowment that will benefit the undergraduate program in the years to come. We are very close to our goal and hope to make this a reality by the end of the Fall 2004 semester.

Undergraduates benefit from scholarship funds

You make the difference

Nuclear Engineering and Radiological Sciences

Undergraduates benefit from scholarship funds

With college expenses increasing, scholarships are a vital part of undergraduate education. As part of the department’s recruiting efforts, a scholarship program was established through first- and second-year Merit Scholarships and a four-year Continuous Merit Scholarship.

The NERS department disburses approximately $50,000 each academic year to students interested in nuclear engineering and radiological sciences. You may remember receiving one of these scholarships yourself. Funding comes, in part, from contributions made by alumni, friends, faculty and staff to the Kikuchi Endowment Fund as well as the newly-established Undergraduate Scholarship Fund.

The department is working hard to establish this new fund as an endowment that will benefit the undergraduate program in the years to come. We are very close to our goal and hope to make this a reality by the end of the Fall 2004 semester.
Nuclear Engineering and Radiological Sciences
1906 Cooley Building
2355 Bonisteel Boulevard
Ann Arbor, MI 48109-2104

Forwarding Service Requested