The Hydroelastic Response of a Flexible Surface Piercing Hydrofoil in Multiphase Flow

Casey M. Harwood
Jacob C. Ward
Yin Lu (Julie) Young
Steven Ceccio

IN COLLABORATION WITH:

Mario Felli
Massimo Falchi
Emilio Campana
Example: Ventilated Surface-Piercing Hydrofoil (INSEAN)

\[\alpha = 15^\circ, \ U = 3.3 \ m/s \ (Fn_h = 2.5), \ AR_h = h/c = 1 \]
Importance of Studying Hydroelasticity

- Natural ventilation is the entrainment of air into low-pressure regions of flow – often in the vicinity of lifting-surfaces.

- Many high-lift devices operate in a surface-piercing configuration
 - Hydrofoils and struts
 - Surface-piercing propellers

- Other lifting systems operate near the free surface and can unintentionally ventilate
 - Waterjet impellers
 - Shallow-depth propellers, hydrofoils, control surfaces

- Marine systems with non-metallic construction are increasingly common
 - Large elastic deformations possible
Implications of Hydroelasticity in Lifting-Surface Applications

- Results from ISROMAC ’16
- With varying immersion-depth, resonant modes of a flexible hydrofoil coalesced and changed order
- Energy-transfer between modes can be a precursor to hydroelastic instability
- FEM predicts that resonant frequencies change with ventilation
Over-arching Objective:
Characterize the steady/unsteady fluid-structure interaction between flexible lifting bodies and multiphase flows (ventilated and vaporous) through a series of experimental programs

Specific Objectives:
- Develop and validate a non-optical method by which to measure the 3D static and dynamic deflections of wing-like structures *in-situ*
- Explore the effects of wetted and ventilated flow regimes on elastic response and vibration characteristics of a flexible hydrofoil
- Quantify the effects of foil flexibility on hydrodynamic loads, flow regime stability, and transition mechanisms
- Present highlights from recent collaboration at CNR INSEAN with Dr. Mario Felli and Dr. Massimo Falchi
Experimental Setup

MHL Towing Tank
- 110 m x 6.7 m x 3.2 m (L x W x D)
- Speeds up to 6.1 m/s
- Yaw angles $-5^\circ < \alpha < 20^\circ$
- Two models
 - Model 1: PVC
 - Model 2: PVC with reinforced TE (6061-Al strip)
Cross-Sections of Flexible Hydrofoils

<table>
<thead>
<tr>
<th>Model</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>PVC Model</td>
<td>PVC with aluminum reinforcement at TE</td>
</tr>
<tr>
<td>Tested in Facilities</td>
<td>UofM Towing Tank</td>
<td>UofM Towing Tank</td>
</tr>
<tr>
<td></td>
<td>INSEAN Cavitation Tunnel</td>
<td>INSEAN Cavitation Tunnel</td>
</tr>
<tr>
<td>Types of Testing</td>
<td>Steady+unsteady hydrodynamic testing in wetted/ventilated flows.</td>
<td>Steady + unsteady hydrodynamic testing in wetted/ventilated/cavitating flows.</td>
</tr>
<tr>
<td></td>
<td>Impact-testing (output-only)</td>
<td>in-situ modal testing</td>
</tr>
</tbody>
</table>

Diagrams

Model 1 Diagram:
- Center of pressure
- SS Spar "B"
- Center of gravity
- Shear center
- SS Spar "A"
- 1.1 in (0.028 m)
- 6.114 in (0.155 m)
- 5 in (0.127 m)
- 4.3 in (0.109 m)
- 1.25 in (0.032 m)
- 11 in (0.279 m)

Model 2 Diagram:
- 2.65 in (0.067 m)
- 4.73 in (0.12 m)
- 2.5 in (0.066 m)
- 11 in (0.279 m)
- Aluminum strip
- 0.25 in (0.006 m)
Development of Shape-Sensing Spars

- Goal: Measure static & dynamic motions of the strut
- Optical methods (e.g. DIC, LDV) are poorly-suited to heterogeneous flows
 - Refraction, reflection, diffraction
- Aluminum spars instrumented with strain gauges
 - Strain distribution fitted by least squares and twice-integrated to yield polynomial $Y(Z)$ along spar’s length
 - Two spars fitted into PVC hydrofoil permit bend and twist to be inferred
 - Decomposition of LS Vandermonde matrix is “cheap” enough to run at 100’s of Hz
Real-Time 3D Shape Sensing
Optical Motion Tracking

- Markers detected automatically by image segmentation and sequential thresholding
- Dot centers computed at brightness-weighted centroid of each white region for sub-pixel accuracy
- “Naïve” implementation, but a good benchmark
Optical Tracking vs. Shape Sensing in a Challenging Flow

\[\alpha = 5^\circ, \, Fn_h = 2.55, \, AR_h = 1, \, \sigma_v > 2 \]

Video played back at 1/20th speed
Optical Tracking vs. Shape Sensing in a Challenging Flow

\[\alpha = 5^\circ, \, Fn_h = 2.55, \, AR_h = 1, \, \sigma_v > 2 \]

Shape-sensing offers:
- Improved resolution compared to rudimentary optical tracking
- Results that aren’t susceptible to dropouts in optical access during ventilated flow
- Improved fidelity of frequency content
- Negligible computational cost
Foil Flexibility Increases Loads Slightly \((F_n h = 3; A R_h = 1) \)

- Results shown for Model 1 (bare PVC hydrofoil)

- There is a small – but consistent – increase in hydrodynamic lift and yawing moment with flexible hydrofoil
- Drag is fairly insensitive to foil flexibility
Scaling the Steady Twist Deformation

- Consider 2D, 2-DOF model
 \[e = \frac{1}{c} (X_{CP} - X_{EA}) \]
- Steady twist given by:
 \[\theta = \frac{a_0 \alpha e \frac{c}{2K_{s,\theta}} q c^2}{K_{s,\theta} - a_0 e \frac{c}{2K_{s,\theta}} q c^2} \]
- Manipulation yields:
 \[\frac{\theta}{\theta + \alpha} = \frac{\theta}{\alpha_e} = \frac{c}{2K_{s,\theta}} q \propto e a_0 F n_h^2 \]
- Should be linear with \(F n_h^2 \), assuming \(e \) and \(a_0 \) are constant

\[e \text{ and } a_0 \text{ both decrease with increasing cavity-length} \]
Review: Ventilation Formation and Elimination

Fully Wetted (FW)

Formation Mechanisms

Elimination Mechanisms

Fully Ventilated (FV)

Pressure Side Spray
Suction Side Spray
Cavitation-induced Ventilation Formation on Reinforced Hydrofoil

\[\alpha = 5^\circ, \ Fn_h = 2.25, \ AR_h = 1, \ \sigma_v = 0.35 \ c \]

Video played back at 1/20th speed
Ventilation Transition Boundaries are Shifted \((AR_h = 1.0)\)

- Induced increase in \(\alpha_{eff}\) advances ventilation inception and delays ventilation washout
- Shaker motor provides excitation force
- Frequency Response Function (FRF) vectors
 \[H_{1i}(\omega) = \frac{XPS(U, Y_i)}{APS(Y_i)} \]
- Compliance frequency response function (FRF) vector from reconstructed surface displacements
 \[H_{1}^{\text{comp}} \equiv \frac{\text{Displacement}}{\text{Force}} \]
- Inertance FRF vector from tip accelerations
 \[H_{1}^{\text{inert}} \equiv \frac{\text{Acceleration}}{\text{Force}} \]
- Individual modes extracted from FRFs for parameter estimation.
Mode Separation for Hydrofoil Vibrations in Air
Mode Separation for Hydrofoil Vibrations in Still Water

\[(AR_h = 1)\]
“Waterfall” Plot of Compliance FRF – Raw

- DRY
- FW
- FV
- PC
“Waterfall” Plot of Compliance FRF – Denoised

- DRY
- FW
- FV
- PC

![Plot of Compliance FRF - Denoised](image)
Modal Frequencies and Damping

Modal Frequencies

Mode Shapes

Modal Damping Ratios

- Regime=DRY;
- Regime=FV;
- Regime=FW;
- Regime=PC;

ω_0 vs F_{n_h}

ξ vs F_{n_h}
Conclusions

• Foil flexibility does affect the hydrodynamic response, but the difference is small in the models tested.
 – Increased hydrodynamic loading commensurate with positive twist angle
 – Earlier ventilation inception and later washout → greater hysteresis
• Deformations scale appropriately with dynamic pressure

• Shape sensing spars are more robust than optical marker tracking

• Qualitative added mass behavior follows expected trends
 – Increases with foil wetting
 – Decreases with ventilation

• Natural frequencies increase with increased forward speed
 – Wake “stiffening” effect

• Damping increases with ventilation & cavitation in some modes
 – Cavity interfaces: alternate paths for energy deposition?
Experimental material is based upon work supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1256260. The authors would also like to acknowledge the support of Dr. Ki-Han Kim under ONR grant number N00014-13-1-0383 and N00014-16-1-2433.

Special thanks to Emilio Campana, Mario Felli, and Massimo Falchi at CNR INSEAN