Contact: Esther Eppele

Sr. Web Editor & Project Manager

Michigan Engineering

Communications & Marketing

(734) 615-7396

3214 SI-North

Johannes Schwank | Faculty

Johannes Schwank

James and Judith Street Professor of Chemical Engineering; Director, REFRESCH

3014 HH Dow
(734) 764-3374


Short Bio


University of Innsbruck, Austria
PhD Chemistry '78
BS Chemistry '75


  • College of Engineering (CoE) Executive Committee
  • CoE Automotive Council
  • Energy Systems Engineering Council
  • Chair of CoE Task Force on Industrial Contracting
  • CoE Scholastic Standing Committee
  • CoE Undergraduate Scholarship Committee
  • Editorial Board, Catalysis Communications
  • Editor in Chief, The Open Energy and Fuels Journal
  • Board Member, AIChE Detroit Local Section
  • International Science Council ,King Abdullah Institute for Nanotechnology, Saudi Arabia
  • Advisory Board, Ohio University Department of Chemical Engineering


  • James and Judith Street Professor of Chemical Engineering (2009-present)
  • Director, Researching Fresh Solutions to the Energy/Water/Food Challenge in Resource-Constrained Environments (REFRESCH) (2013 - present)
  • Director, Electron Microbeam Analysis Laboratory, (2013-2015)
  • Interim Director, Energy Institute (2011-2012)
  • Professor, Department of Chemical Engineering (1990-present)
  • Associate Director, Electron Microbeam Analysis Laboratory (1986-2000)
  • Associate Professor, Department of Chemical Engineering (1984-1990)
  • Assistant Professor, Department of Chemical Engineering (1980-1984)
  • Engineering Research Assistant, Department of Chemical Engineering (1979-1980)
  • Postdoctoral Scholar, Department of Chemical Engineering (1978-1979)


    • Visiting Professor, University of Innsbruck, Austria, (1987-1988)
    • Visiting Professor, Technical University, Vienna Austria, (1987)
    • Guest Professor, Tianjin University, Tianjin, China (2011-2013)


      Research Interests

      Our research program is focused on fundamental and applied research problems in heterogeneous catalysis, sensors, and energy storage materials. A major theme is the development of correlations between surface structure of materials and their reactivity. The laboratories are equipped with comprehensive catalyst and materials characterization facilities.

      In the area of heterogeneous catalysis, we focus on correlations between the catalyst structure and composition and catalytic function in reactions of industrial importance. Principles of nucleation, clustering, and growth of small particles on support materials are under investigation, with emphasis on bimetallic catalyst systems and oxide catalysts. Of particular interest are geometric and electronic interactions between catalyst components as a means to modify catalytic activity and selectivity. A major thrust of our research efforts is the characterization of supported catalysts by analytical and high-resolution electron microscopy. The microstructural characterization results are then brought into context with X-ray diffraction, atomic absorption, neutron activation analysis, gas chemisorption and X-ray photoelectron spectroscopy data. In-situ spectroscopic techniques such as Fourier-Transform infrared spectroscopy are utilized to monitor adsorbed surface species under reaction conditions. These characterization data are then used to interpret kinetic results for hydrogen or oxygen transfer reactions obtained in flow reactors. Current catalysis projects include autothermal reforming of hydrocarbons, direct reforming solid oxide fuel cell catalysts, automotive emission control catalysis, Fischer-Tropsch catalysis, partial oxidation of hydrocarbons, photocatalytic oxidation and water splitting, and biomass conversion.

      In the area of sensors, our group has developed microelectronic gas sensors for a wide range of important applications, from monitoring the purity of microelectronic processing gases to environmental sensing and automotive exhaust gas sensing and diesel particulate sensing. Chemical species are detected on the basis of several principles, including gas adsorption-induced resistance and work function changes.

      In the energy storage area, we work on synthesis and characterization of battery electrode materials, with special focus on prototyping of multivalent intercalation cathode materials.


      Courses Taught:

      • ChE 230 - Thermodynamics I
      • ChE 342 - Heat and Mass Transfer
      • ChE 344 - Reaction Engineering and Design
      • ChE 460 - Chemical Engineering Laboratory II
      • ChE 470 - Colloids and Interfaces
      • ChE 486 - Chemical Process Simulation and Design I
      • ChE 487 - Chemical Process Simulation and Design
      • ChE 496 - Selected Topics: Hydrogen Technology I
      • ChE 542 - Intermediate Transport Phenomena
      • ChE 628 - Industrial Catalysis
      • ChE 696 - Selected Topics: Chemical Sensors
      • ChE 696 - Selected Topics: Fuel Cells and Fuel Processors
      • ChE 696 - Selected Topics: Hydrogen Technology
      • ChE 696 - Selected Topics: Fossil and Renewable Fuels
      • ChE 697 - Problems in Chemical Engineering: Thin Films and Catalysis

        Honors & Awards

        • U-M Chemical Engineering Department Excellence Award, 2005
        • College of Engineering Excellence in Service Award, 1996
        • Giuseppe Parravano Award for Excellence in Catalysis Research, 1994
        • Research Excellence Award, College of Engineering, U of M, 1989
        • Class of 1938 E Distinguished Service Award, U of M, 1986

        Selected Publications

        • “Nature of the two-step temperature-programmed decomposition of PdO supported on alumina”, X. Chen, J. W. Schwank, G.B. Fisher, Y. Cheng, M. Yagner, R. W. McCabe, M. B. Katz, G.W. Graham, and X. Pan, Applied Catalysis A: General, 475, 420-426 (2014).
        • In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation”, Jialong Liu, Wei Liu, Qian Sun, Shouguo Wang, Kai Sun, Johannes Schwank and Rongming Wang, Chemical Communications 50, 1804-1807 (2014). DOI: 10.1039/C3CC47772J
        • “Evaluation of Ni/SDC as anode material for dry CH4 fueled Solid Oxide Fuel Cells”, Zhiming Wang, Yongdan Li, and Johannes W. Schwank, Journal of Power Sources 248, 239-245 (2014). DOI: 10.1016/j.jpowsour.2013.09.043
        • “Effect of Diluent Gas on Ethylene Epoxidation Activity over Various Ag-Based Catalysts on Selective Oixdation Supports”, Atiporn Chongterdtoonskul, Thitiporn Suttikul, Malee Santikunaporn, Johannes W. Schwank, Sumaeth Chavadj, Journal Of Molecular Catalysis A: Chemical 386, 5-13 (2014).
        • “A review on TiO2-based nanotubes formed via hydrothermal synthesis: formation mechanism, structure modification, and photocatalytic applications”, Nan Liu, Xiaoyin Chen, Jinli Zhang, Johannes W. Schwank, Catalysis Today 225, 34-51 (2014).
        • “Comparative Study on the Influence of Second Metals on Ag-Loaded Mesoporous SrTiO3 Catalysts for Ethylene Oxide Evolution”, Atiporn Chongterdtoonskul, Johannes W. Schwank, and Sumaeth Chavadej, Journal of Molecular Catalysis A: Chemical 372, 175-182 (2013).
        • “Improvement of Activity and SO2 Tolerance of Sn-Modified MnOx-CeO2 Catalysts for NH3-SCR at Low Temperature, Huazhen Chang, Xiaoyin Chen, Junhua Li, Ma Lei, Chizhong Wang, Caixia Liu, Johannes W. Schwank, Jiming Hao, Environmental Science & Technology, 47 (10): 5294-5301 (2013).  DOI: 10.1021/es304732h
        • Preparation of supported POM catalysts for liquid phase oxydehydration of glycerol to acrylic acid”, Sarawalee Thanasilp, Johannes W.Schwank, Vissanu Meeyoo,  Sitthiphong Pengpanich and Mali Hunsom, Journal of Molecular Catalysis, A, Chemical, 380 (2013) 49-56
        • “Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith”, Ruixue Gu; Guangming Zeng; Jingjing Shao; Yuan Liu; Johannes W. Schwank; Yongdan Li, Frontiers of Chemical Science and Engineering, 7 (3): 270-278 (2013)
        • “Effects of oxide supports on ethylene epoxidation activity over Ag-based catalysts”, Atiporn Chongterdtoonskul, Johannes W. Schwank, and Sumaeth Chavadej, Journal of Molecular Catalysis A: Chemical, 358 (2012) 58-66. doi:10.1016/j.molcata.2012.02.01
        • “Synthesis of Ni@SiO2 nanotube particles in a water-in-oil microemulsion template”, Dahlberg, K.A., Schwank, J. W., Chemistry of Materials 2012 vol. 24, no. 14, (2012) 2635-2644.
        • “Effect of tin on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2”. Huazhen Chang, Junhua Li, Xiaoyin Chen, Lei Ma, Shijian Yang, Johannes Schwank, and Jiming Hao, Catalysis Communications 27 (2012) 54-57.
        • “Ethylene Epoxidation Activity Over Ag-Based Catalysts on Different Nanocrystalline Perovskite Titanate Supports”, ” Atiporn Chongterdtoonskul, Johannes W. Schwank, and Sumaeth Chavadej, Catalysis Letters, 142 (8) (2012), 991-100