Simulations by Professor Sharon Glotzer’s group were the key to figuring out why some nano-hexagons created unexpected tiling patterns.

Many research groups in our department use advanced scientific computing and molecular simulation as tools for elucidating chemical, physical and biological fundamentals. For example, we are examining the formation and fate of nanoparticles in the environment, chemical reactions occurring on catalyst surfaces, cellular signaling, polymer rheology, low temperature plasmas and nano-scale self assembly of particles with different geometries.

Sharon Glotzer

Professor Sharon Glotzer and her research group use computer simulation to discover the fundamental principles of how nanoscale building blocks can self-assemble and how that assembly process can be guided to engineer new materials. Her team develops the theory and molecular simulation tools to understand self-assembling, self-sensing, and self-regulating materials. They also model supercooled liquids, glasses, and crystallization processes.

Glotzer Group

Mark Kushner

Professor Mark Kushner and his group develop computationally investigate the fundamental transport and kinetic properties of low temperature plasmas (partially ionized gases), plasma chemistry and plasma surface interactions and their application to society benefiting technologies. Current projects include plasma fabrication of advanced materials for nano-electronics, plasma medicine (use of plasmas for human healthcare), macro- and micro-plasmas as photonic sources, plasmas in liquids, plasma treatment of porous polymeric membranes, and plasma aided combustion for energy efficient transport systems.

Computational Plasma Science and Engineering Group

Ronald Larson

Professor Ronald Larson's simulation work spans the rheology of polymers, surfactant microstructures, polymer/drug interactions and reconfigurable colloids.

Larson Group

Xiaoxia (Nina) Lin

Professor Nina Lin and her group study biological switching, the symbiotic relationships among communities of microbes and engineering microbial communities process chemicals such as biofuels. Her team uses a combination of experiments and computer modeling.

Lin Group

Jennifer Linderman

Professor Jennifer Linderman and her group develop computer models of cell signaling. In addition to simulating cell signaling mechanisms, the group is modeling the signaling events that lead to metastasis in breast cancer and the interplay between immune cells and bacteria in tuberculosis infections.

Linderman Group

Suljo Linic

The central objective of Professor Suljo Linic's lab is the development of predictive theories of surface chemistry related to heterogeneous catalysis, electrocatalysis and photocatalysis. Through experiments and theoretical studies, lab members are currently working on a number of projects that aim to address various issues in the fields of energy and environment, functional nanomaterials, industrially-important reactions and fundamental heterogeneous catalysis.

Linic Lab

Heather Mayes

Professor Heather Mayes and her team use computational chemistry and multiscale modeling to study elementary reaction mechanisms and structure-function relationships. Their work employs enhanced sampling methods to reveal how enzymes effectively decompose non-food biomass. The lab also analyzes how small differences in glycosylation motifs have large effects on protein properties such as thermostability.

Team Mayes and Blue

Greg Thurber

Professor Greg Thurber and his research group study molecules used to image diseased tissue such as tumors, Alzheimer's plaques and arterial plaques through a combination of experiment and modeling. The same features that allow imaging molecules to target particular tissues can also be turned to targeted drug delivery. With a fundamental understanding of how molecules distribute in the body, the team can design better molecules for imaging and therapies.

Thurber Lab

Angela Violi

Professor Angela Violi's lab studies the formation and fate of nanoparticles in the environment through computer simulations. Violi's work encompasses biological risk assessment and remediation of nanoparticles as well as the combustion of fuels and the production of nanoparticles in such systems.

Multiscale Molecular Science and Engineering Lab

Robert Ziff

Professor Robert Ziff and his colleagues use computer simulation and mathematical modeling to study a variety of problems of interest to fields of chemical engineering, mathematics, and physics. The modeling and simulation work includes several numerical algorithms to obtain precise critical connectivity thresholds for two and three-dimensional systems through the percolation model. Ziff and his colleagues have also developed a kinetic Monte Carlo technique that allows reaction dynamics to be studied efficiently, including the kinetic phase transitions that occur in such systems.