Professor Michael Solomon discusses the internal structure of gels with graduate student Lilian Hsiao. Image by Laura Rudich | Michigan Engineering

Polymers are ubiquitous in modern life, as are complex fluids – soft materials with properties between those of liquids and solids. Researchers in the Chemical Engineering Department are developing polymer films for use in energy conversion, new polymers for flexible solar cells, membranes and medical devices, and polymer coatings that change properties when exposed to stimuli. The research in this area includes rheology studies, molecular simulation, colloid self-assembly, gelation and percolation.

Scott Fogler

Ongoing research topics for Professor Scott Fogler and his research group include: flow, reaction, precipitation and modeling of wax deposition in subsea pipelines, asphaltene deposition and precipitation, rheometric and microscopic studies of crystallization and of gel breaking phenomena, asphaltene characterization and precipitation kinetics, and catalyzed dissolution of minerals. A number of research results are now being used in industrial applications.

Fogler Group

Jinsang Kim

Professor Jinsang Kim and his research group develop design principles for self-organizing polymers and approaches for engineering the band gap of semiconducting polymers. The group also studies phosphorescent organic crystals, biosensors, flexible solar cells and bio-inspired conductive adhesives.

Kim Group

Joerg Lahann

Professor Joerg Lahann's research interest is focused on the development of active, multi-functional bio-interfaces, which are applicable to a range of biomedical applications. His group's recent advances in the molecular design of active nanostructures include the introduction of reactive coatings, reversibly switching surfaces and anisotropic nanoparticles that support the vision of smart interfaces and act as templates in time-controlled surface interactions.

Lahann Lab

Ronald Larson

Professor Ronald Larson and his group study polymer rheology through experiment, theory and simulation. The team is also developing colloidal materials that self assemble and can be reconfigured on command or in response to environmental signals to form novel optical and electronic materials. Using molecular dynamics methods, the Larson Group also simulates surfactant structures and properties.

Larson Group

Timothy Scott

With his research group, Professor Timothy Scott is developing ways to use free radicals to make new kinds of polymers, which may be useful for medical devices or energy capture and storage.

Scott Polymer Dojo

Michael Solomon

Professor Michael Solomon and his research group investigate complex fluids—soft materials with properties intermediate between fluids and solids. Solomon's current interests include nanocolloidal assembly, colloidal gelation, and the biomechanics of bacterial biofilms. Applications that interest the group include creating new optical materials, sensors, biomedical devices and procedures, as well as materials for energy management.

Solomon Group

Anish Tuteja

Professor Anish Tuteja and his group use polymers to address key challenges in the areas of renewable energy and environmental science. They develop super oil-repellent surfaces, super water-repellent surfaces, ice-repellent surfaces, membranes and polymer nanocomposites. Applications include the separation of oil and water and energy-conversion materials for solar cells.

The Polymers, Surfaces and Interactions (ψ) Group

Robert Ziff

Professor Robert Ziff and his colleagues use computer simulation and mathematical modeling to study a variety of problems of interest to fields of chemical engineering, mathematics, and physics. The percolation model is used to study such phenomena as flow through porous media, conductivity of composites such as nano-tubules, polymer gelation and growth of the giant component in networked systems. We have developed several numerical algorithms to obtain precise critical connectivity thresholds for two and three-dimensional systems, and have identified several universal properties of the critical percolation "fractal."