E. coli engineered to produce antimicrobial peptides (AMPs) allow tens of thousands of AMP designs to be tested quickly in Professor Erdogan Gulari’s lab. Photo: Joseph Xu, Michigan Engineering Communications & Marketing

From using T-cells to fight cancer to using microbes to produce biofuels, cellular engineering is a growing area of chemical engineering research at Michigan. Our department is also uncovering new cellular-level information – for example, how cellular signaling occurs or how cancer cells travel through the bloodstream – that can be used to fight diseases. This new knowledge can also be used in tissue engineering.

Omolola Eniola-Adefeso

Professor Lola Eniola-Adefso and her group design particles that can navigate the bloodstream and home in on inflamed cells for targeted drug delivery and imaging. They use in vitro experimental setups to understand the receptor-ligand interactions involved in leukocyte firm arrest and transmigration. The group also designs sophisticated leukocyte mimetics that can target therapeutics to diseased vasculature via multiple receptor-ligand interactions with applications in cardiovascular disease and cancer.

Cell Adhesion and Drug Delivery Lab

Xiaoxia (Nina) Lin

Professor Nina Lin and her group investigate communities of microbes and engineers symbiotic relationships among them to process chemicals, such as turning plant material into biofuels.

Lin Group

Jennifer Linderman

Professor Jennifer Linderman and her group study receptor dynamics, cell signaling and ligand-induced cell behavior. Particular areas of investigation include the immune response to infection with Mycobacterium tuberculosis, calcium signaling and migration and metastasis of breast cancer cells. Computational approaches include multi-scale and agent-based modeling.

Linderman Group

Sunitha Nagrath

Professor Sunitha Nagrath's research focus is the development of advanced MEMS tools for understanding cell trafficking in cancer through isolation, characterization and study of circulating cell in peripheral blood of cancer patients. Her group works on isolating and studying rare cells from cancer patients. These studies will progress to the design and development of smart chips that use microfluidics and nanotechnology to make an impact in medicine and life sciences.

Nagrath Lab

Andrew Putnam

Professor Andrew Putnam and his group study the instructive role of the extracellular matrix (ECM) in the determination of cell fate, particularly on the role of matrix compliance (i.e., stiffness) and matrix remodeling during neovascularization. The team then seeks to leverage this fundamental knowledge to design instructive materials as synthetic ECMs for applications in regenerative medicine and as model systems in which to study disease.

Cell Signalling in Engineered Tissues Lab

Greg Thurber

Professor Greg Thurber and his group study molecules used to image diseased tissue, such as tumors, Alzheimer's plaques, and arterial plaques. The same features that allow imaging molecules to target particular tissues can also be turned to targeted drug delivery. With a fundamental understanding of how molecules distribute in the body, the team can design better molecules for imaging and therapies.

Thurber Lab

Henry Wang

Professor Henry Wang is interested in biopharmaceutical engineering including personalized medicine, rapid vaccine and drug development, and regulatory science and engineering for biomedical innovation. His group is also developing a systematic approach for integrating chemical and biological reactions to produce energy and other products from biomass.

Fei Wen

Professor Fei Wen's research goal is to harness the immunological power of T-cells to fight cancer and infections and to control their undesired behaviors associated with autoimmunity and allergies. Her group is also engineering microbes that are capable of converting plant biomass to biofuels, such as ethanol.

Wen Protein Assembly Engineering Research Group

Antimicrobial Peptides for Battling Cancer



Donald L. Katz Professor of Chemical Engineering Erdogan Gulari and his team of researchers have been working to synthesize and find antimicrobial peptides that will battle selective targets such as cancer.