Krzysztof Fidkowski | Faculty

Krzysztof Fidkowski

Associate Professor, Aerospace Engineering

3029 FXB
kfid@umich.edu
(734) 615-7247

 

 

Short Bio

Krzysztof Fidkowski is an associate professor in the Aerospace Engineering Department at the University of Michigan.  His research interests include development of robust solution techniques for computational fluid dynamics, error estimation, computational geometry management, parallel computation, large-scale model reduction, and design under uncertainty.  His teaching interests are in undergraduate aerodynamics and numerical methods, and in graduate computational fluid dynamics.

EDUCATION

Massachusetts Institute of Technology
PhD Aerospace Engineering '07
SM Aerospace Engineering '04
SB Aerospace Engineering '03
SB Physics '03

POSITIONS HELD AT U-M

  • Associate Professor, Aerospace Engineering, 2014 - present
  • Assistant Professor, Aerospace Engineering, 2008 - 2014

Research Interests

  • Robust algorithms for computational fluid dynamics
  • Geometry management and mesh generation
  • Parallel computation
  • Large-scale model reduction
  • Output-based error estimation
  • Design under uncertainty

Teaching

FALL 2013

AE 325: MWF 8:30 - 10:00, 1109 FXB

Office Hrs: M 3:00 - 4:30, W 12:30 - 2:00

TEACHING INTERESTS

  • Aerodynamics
  • Numerical methods
  • Computational fluid dynamics

Recent Publications

[1] Krzysztof J. Fidkowski.  A hybridized discontinuous Galerkin method on mapped de- forming domains. Computers and Fluids, In Press, 2016. doi:10.1016/j.compfluid.2016.04.004.

[2] Steven M. Kast, Johann P.S. Dahm, and Krzysztof J. Fidkowski.  Optimal test func- tions for boundary accuracy in discontinuous finite element methods. Journal of Com- putational Physics, 298(1):360 – 386, 2015.  URL: http://www.sciencedirect.com/ science/article/pii/S0021999115003885, doi:10.1016/j.jcp.2015.05.048.

[3] Marco A. Ceze and Krzysztof J. Fidkowski. Constrained pseudo-transient continuation. International Journal for Numerical Methods in Engineering, 102:1683–1703, 2015. doi:10.1002/nme.4858

[4] Devina Sanjaya, Krzysztof Fidkowski, and Ian Tobasco. Adjoint-accelerated statisti- cal and deterministic inversion of atmospheric contaminant transport.  Computers and Fluids, 100(1):291–307, 2014. doi:10.1016/j.compfluid.2014.05.021.

[5] K.J. Fidkowski. Algebraic tailoring of discontinuous Galerkin p-multigrid for convection. Computers and Fluids, 98(2):164–176, 2014. doi:10.1016/j.compfluid.2014.01.021.

[6] M. A. Ceze and K. J. Fidkowski.  Drag prediction using adaptive  discontinuous finite elements. AIAA  Journal of Aircraft, 51(4):1284–1294, 2014. doi:10.2514/1.C032622.

[7] Steven M. Kast and Krzysztof J. Fidkowski. Output-based mesh adaptation for high or- der Navier-Stokes simulations on deformable domains. Journal of Computational Physics,252(1):468–494, 2013. doi:10.1016/j.jcp.2013.06.007.

[8] Z.J. Wang, Krzysztof Fidkowski, Remi Abgrall, Francesco Bassi, Doru Caraeni, Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, H.T. Huynh, Norbert Kroll, Georg May, Per-Olof Persson,  Bram van Leer, and Miguel  Visbal.   High-order CFD methods: Current status and perspective. International Journal for Numerical Methods in Fluids, 2013. doi:10.1002/fld.3767.

[9] Marco A. Ceze and Krzysztof J. Fidkowski.  An anisotropic hp-adaptation framework for functional prediction. American Institute of Aeronautics and Astronautics Journal, 51:492–509, 2013. doi:10.2514/1.J051845.

[10] T. J. Drzewiecki, I. M. Asher, T. P. Grunloch, V. E. Petrov, K. J. Fidkowski, A. Manera, and T. J. Downar. Parameter sensitivity study of boiling and two-phase flow models in CFD. Journal of Computational Multiphase Flow, 4(4), 2012. doi:10.1260/1757-482X.4.4.411.

 [11] K.  J. Fidkowski, M.  A.  Ceze, and P. L. Roe.   Entropy-based drag error estimation and mesh adaptation in two  dimensions. AIAA  Journal of Aircraft, 49(5):1485–1496, September-October 2012. doi:10.2514/1.C031795.

[12] C. Lieberman,  K.  Fidkowski, K.  Willcox,  and B. van Bloemen Waanders.  Hessian- based model reduction: large-scale inversion and prediction.  International Journal for Numerical Methods in Fluids, 2012. doi:10.1002/fld.3650.

[13] R.P. Drake, F.W. Doss, R.G. McClarren, M.L. Adams, N. Amato, D. Bingham, C.C. Chou, C. DiStefano, K. Fidkowski, B. Fryxell, T.I. Gombosi, M.J. Grosskopf, J.P. Hol- loway, B. van der Holst, C.M. Huntington,  S. Karni,  C.M. Krauland,  C.C. Kuranz, E. Larsen, B. van Leer, B. Mallick,  D. Marion,  W. Martin,  J.E. Morel, E.S. Myra, V.  Nair,  K.G.  Powell, L.  Rauchwerger, P. Roe, E. Rutter,  I.V.  Sokolov, Q. Stout, B.R.  Torralva,  G. Toth,  K.  Thornton,  and A.J.  Visco. Radiative  effects in  radia- tive  shocks in  shock tubes.    High Energy Density Physics, 7:130–140,  2011. doi:10.1016/j.hedp.2011.03.005.

[14] Krzysztof J. Fidkowski and Yuxing Luo. Output-based space-time mesh adaptation for the compressible Navier-Stokes equations. Journal of Computational Physics, 230:5753–5773, 2011. doi:10.1016/j.jcp.2011.03.059.

[15] Krzysztof J. Fidkowski.  Output  error estimation strategies for discontinuous Galerkin discretizations of unsteady convection-dominated flows. International Journal for Nu- merical Methods in Engineering,  88(12):1297–1322, 2011. doi:10.1002/nme.3224.

[16] Krzysztof J. Fidkowski and David L. Darmofal. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. American Institute of Aeronautics and Astronautics Journal, 49(4):673–694, 2011. doi:10.2514/1.J050073.

[17] Krzysztof J. Fidkowski and Philip  L.  Roe.   An  entropy adjoint  approach to  mesh refinement.   SIAM  Journal  on Scientific Computing, 32(3):1261–1287,  2010.   doi:10.1137/090759057.

[18] D. Galbally, K.  Fidkowski, K.  Willcox,  and O. Ghattas.  Nonlinear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering,  81:1581–1608, 2009. doi:10.1002/nme.2746.

[19] K. J. Fidkowski and D. L. Darmofal. A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations. Journal of Computational Physics, 225:1653–1672, 2007. doi:10.1016/j.jcp.2007.02.007.

[20] D.W. Milanes, D.R. Kirk,  K.J. Fidkowski, and I.A. Waitz.  Gas turbine engine durability impacts of high-fuel-air ratio combustors: near wall reaction effects on film-cooled backward-facing step heat transfer. Journal of Engineering for Gas Turbines and Power, 128(2):318–325, 2006. doi:10.1115/GT2002-30182.

Full publications list (PDF)