Aero 524: Aerodynamics II

<table>
<thead>
<tr>
<th>COURSE #: AE 524</th>
<th>COURSE TITLE: AERODYNAMICS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMS OFFERED: Winter</td>
<td>PREREQUISITES: Aero 325</td>
</tr>
<tr>
<td>INSTRUCTOR(S): Powell, Roe</td>
<td>SCIENCE/DESIGN CREDITS: 2/1 (elective course)</td>
</tr>
</tbody>
</table>

CATALOG DESCRIPTION:
Two- and three-dimensional potential flow about wings and bodies; complex-variable methods; singularity distributions; numerical solution using panel methods. Unsteady aerodynamics; slender-body theory. Viscous effects: airfoil stall, high-lift systems, boundary-layer control. Wings and bodies at transonic and supersonic speeds; numerical methods.

COURSE TOPICS:
1. Applications of complex-variable methods to potential flows.
2. Panel methods for 2D flows.
3. Effects of airfoil flaps and slats.
4. Vortex-lattice techniques for 3D flows.
5. Slender-body and slender-wing theory.
6. Aerodynamics of supercritical flight.
7. Wings and bodies at supersonic speeds.
8. Euler and Navier-Stokes CFD methods for aerodynamics.

COURSE OBJECTIVES
1. To introduce students to panel and vortex-lattice methods for computing potential flows.
2. To extend students’ knowledge of induced drag.
3. To introduce students to slender-body and slender-wing theory.
4. To teach students the aerodynamics of transonic flows.
5. To introduce students to modern CFD tools for aerodynamic analysis.

COURSE OUTCOMES
On completion of Aero 524, students can:
1. Use complex-potential superposition and conformal mapping for simple 2D potential flows. (Assessed by: 1)
2. Develop a 2D panel method for lifting airfoils. (Assessed by: 1,2,3,4)
3. Describe qualitatively the effects of leading-edge slats and trailing edge flaps on airfoil aerodynamics. (Assessed by: 2,3)
4. Describe the vortex-lattice technique. (Assessed by: 1,2)
5. Describe qualitatively the transonic flow pattern over a supercritical airfoil. (Assessed by: 1,2)
6. Develop a 2D Euler solver. (Assessed by: 4)

ASSESSMENT TOOLS
1. Individual homework.
2. Hourly exams.
3. Final exam.

Generated: May 1999
Updated prereq. course number: April 2005